
18/9/2007 I2A 98 slides 8 1 Richard Bornat
Dept of Computer Science

Using lots of space to save lots of time.

Our desktop PCs have 32-bit integers; there are 232

different integers in their range, or about 4 109× –
4 billion possible integers.

Suppose we have a sequence A0 999.. which contains
integers; the problem is to find whether some integer
x occurs in A or not.

Suppose we also have an array H which has 232

elements. For each value y which does occur in A we
put true in Hy; we put false in all the other elements.

we may have to play a trick with negative values of x to fool
Java...

To test whether integer x occurs in A we look at Hx; if
we find true then x is in the sequence; if we find false
then x is not in the sequence.

This is O 1() – constant-time – searching, achieved at
a huge space cost.

18/9/2007 I2A 98 slides 8 2 Richard Bornat
Dept of Computer Science

We can always save time, as in this case, by pre-computing all the
answers and putting them into an array; then the cost of finding an
answer is just the cost of looking in the array .. if we neglect the
cost of setting-up the array of answers.

Setting up H could be quick: it would be easy to build
hardware which in a single memory cycle could flood
the whole of H with falses, and then this O N() loop
would put the trues in place:

for (k=m; k<n; k++)
 H[(long)A[k]&0xffffffffL]=true;

The arithmetical trickery in this example exploits the fact that
we know that Java’s ints are 32 bits, and its longs are 64 bits.

To look up an integer x:

H[(long)A[k]&0xffffffffL]

18/9/2007 I2A 98 slides 8 3 Richard Bornat
Dept of Computer Science

The space cost is huge, but just how huge?

Since we only have to store trues and falses in H, we
could use a single bit per element; each byte of
memory in our desktop PC has 8 bits, so we would
need 2

8
32 = 229 ! 500 megabytes.

At the time of writing memory is less than £2 a megabyte, so
for about £1000 you can buy enough memory to hold array H.
Java doesn’t support bit-arrays, but there is no reason why it
shouldn’t.

Here’s O 1()-time code which would search for x in an
array H of 232 bits, represented by an array M of 229

bytes:

M[x>>3]&(1<<(x&0x7))!=0;
 // x>>3 is (unsigned x)/8;
 // x&0x7 is (unsigned x)%8;
 // M[x>>3] picks a byte;
 // 1<<(x&0x7) picks a bit position;
 // & picks out the bit;
 // !=0 converts the answer to true or false

18/9/2007 I2A 98 slides 8 4 Richard Bornat
Dept of Computer Science

Constant-time searching of sequences of larger values
using a similar technique, would be less practical,
because there would be many more than 232 possible
values to be pre-indexed in H.

In some cases - e.g. strings - there is an infinite number of
possible values, so we couldn’t use this technique at all.

In practice we have to be satisfied with something not
quite so quick: hash addressing gives O 1()
performance and uses less space, but it may make
more than a single comparison to find a value x in the
sequence.

18/9/2007 I2A 98 slides 8 5 Richard Bornat
Dept of Computer Science

Hash addressing.

Hash addressing: index a table not with the key we
are looking for, but with a hash key: a number
derived from the original key.

I assume a good deal of spare space – 1 megabyte, say
– and the same sequence A0 999.. of 32-bit integers.

These days 1 megabyte isn’t much memory: you’d easily offer
it if that was the price you had to pay for fast O 1() searching.
Luckily, the price isn’t that high.

I assume also that we want to search A very often so
that we won’t be put off by setup costs, however high
they turn out to be.

18/9/2007 I2A 98 slides 8 6 Richard Bornat
Dept of Computer Science

Hash addressing, (faulty) version 1 – a bit array Lb.

this version doesn’t work, but it gets us closer to an
understanding.

I assume that the machine and our compiler give us bit-
addressing.

Suppose the spare megabyte holds an array Lb of bits:
there is room for 2 8 220 23× = elements, so it will be
impossible to give a unique entry to each element.

But we have only a thousand (about 210) integers to
search, so there are many more elements of Lb than
there are integers in A.

To enter or to look up an integer x, use
x Lbmod size of(): if there’s a 1 at that position in Lb
then x is in the sequence A; if there’s a 0 then x isn’t
in the sequence A.

18/9/2007 I2A 98 slides 8 7 Richard Bornat
Dept of Computer Science

To initialise Lb, we must have some hardware which
will flood it with 0s. Then we can insert the 1 bits,
one at a time:

for (int k=0; k<1000; k++)
 Lb[A[k]&0x7fffff]=1;

and to look up an integer x:

Lb[x&0x7fffff]==1;

If there is a 1 in Lb[x&0x7fffff] then A contains an
integer which shares its last 23 bits with x. But that
number might not be x – it could be x ± 224,
x ± ±2 224 25, ...

The test doesn’t look at the top 9 bits of x, so there are
29 other integers which might be signalled by that 1.

We can’t use a bit-array.

18/9/2007 I2A 98 slides 8 8 Richard Bornat
Dept of Computer Science

Hash addressing, version 2 – L an array of integers.

this is the basis of a solution – but we shall meet some snags.

When we looked for x in Lb we got a ‘miss’ (0) or we
get a ‘hit’ (1). A ‘miss’ meant that x is definitely not
in A. A ‘hit’ meant that x might be in A.

We need to distinguish between ‘accidental’ hits – x
shares a hash index with a number which is in A – and
‘correct’ hits – x really is in A.

Instead of storing a 1 or a 0 in Lb, I’m going to store
an integer in L. I have a megabyte of space, so L will
have 2

4
1820 2= elements – about 250 000.

L is still much larger than A.

We shall use the last 18 bits of x to index L.

We shall assume, for reasons which will become
clear, that 0 doesn’t occur in A.

we shall see later how to relax this requirement.

18/9/2007 I2A 98 slides 8 9 Richard Bornat
Dept of Computer Science

We zero-flood L as usual.

Then we insert the values from A:

for (k=0; k<1000; k++)
 L[A[k]&0x3ffff]=A[k];

To look up an integer x:

x!=0 && L[x&0x3ffff]==x;

Suppose that x y" but x y imod mod2 218 18= = . Then
either L xi = or L yi = : it can’t be both.

We have created the problem of ‘false misses’: if
L yi = we shall look in L for x and find y, yet perhaps
x really does belong to A.

We can fix the problem of false misses.

18/9/2007 I2A 98 slides 8 10 Richard Bornat
Dept of Computer Science

Aside: collisions are quite likely.

When two search keys share the same entry in the
hash table we have a collision.

Collisions are surprisingly likely, even though L is
large and A is small.

When n people meet there is a chance that there will
be a pair with the same birthday: the chance is
1 364

365
363

365
365

365# × × ×()#... n , and in a group of only
23 people there is more than a 50% chance that
there’s a shared birthday.

The chance that two elements of a thousand-element
array A share the same low 18 bits is
1 2 1

2
2 2

2
2 1000

2
18

18
18

18
18

18# × × ×()# # #... : 85% chance of at
least one such coincidence, according to my
calculations, despite the fact that L has more than 250
spare elements for every one that is used!!

18/9/2007 I2A 98 slides 8 11 Richard Bornat
Dept of Computer Science

Hash addressing version 3: handling collisions by
‘rehashing’.

When we insert an element of A into some hash table
element Li we have to be careful: we might find the
element we want to use is already ‘full’.

An element is ‘full’, in my simplified treatment, if it
is non-zero.

When we insert elements into L we look in the next
position when we find a full one:

for (k=0; k<1000; k++) {
 for (int i = A[k]&0x3fff;
 L[i]!=0 && L[i]!=A[k]; i=(i+1)&0x3fff) ;
 L[i]=A[k];
}

the ‘wrap round’ calculation makes sure that if/when i reaches
the end of L, it starts again at the beginning.

the loop stops when L L Ai i k= $ =0

there are bound to be lots of free positions, given my
assumptions about the sizes of L and A.

18/9/2007 I2A 98 slides 8 12 Richard Bornat
Dept of Computer Science

When we look in L, we make sure we don’t give up
until we have seen an empty element:

if (x==0) return false; // no zeroes in L
else {
 for (int i = x&0x3fff;
 L[i]!=x; i=(i+1)&0x3fff)
 if (L[i]==0) return false;
 return true; // loop terminates when L[i]==x
}

That code does a ‘hash’ of the number x to give an
index i of L; it then does a sequential search from that
position to find if x has been entered into L.

To get O 1() performance we must ensure that the
length of the sequential search is independent of the
size of the sequence A; to get fast O 1() performance
we must ensure that the sequential search is on
average very short.

Exact analysis supports our gut feeling that if the size
of L is much larger than the size of A, then the
sequential search will be very short; the same analysis
also shows that we don’t need such a large array as L
to get O 1() search times.

18/9/2007 I2A 98 slides 8 13 Richard Bornat
Dept of Computer Science

Exact analysis of ‘linear rehash’.

Weiss (p615) gives the formula, and refers us to
Knuth for the analysis.

Let % be the ‘load factor’: the proportion of our ‘hash
table’ that is used. In the case of L and A above, % is
very small, about 1

250.

% is the probability that when we compute an index i,
we find a cell which is full; the probability that we
find it empty is therefore 1# % . Naively, the average
number of times we have to look to find an empty
entry might be expected to be 1

1#% , which in our case
is 250

249, pretty close to 1.

That analysis works for small values of %, but at
larger values it breaks down. We get ‘clustering’:
those entries which hash to i get confused with those
which hash to i+1, and both those sets get confused
with those which hash to i+2, and so on and on.

18/9/2007 I2A 98 slides 8 14 Richard Bornat
Dept of Computer Science

The average number of probes to make a successful
search, say Knuth, Sedgewick and Weiss, is

1
2

1
1+ #%

The average number of probes to make an
unsuccessful search is

1

2

1
1 2+
#()%

18/9/2007 I2A 98 slides 8 15 Richard Bornat
Dept of Computer Science

Here’s a tabulation of those two functions for various
values of % :

Load factor successful search
(average)

unsuccessful search
(average)

0.004 1.002 1.004
0.1 1.056 1.117
0.2 1.125 1.281
0.3 1.214 1.520
0.4 1.333 1.889
0.5 1.500 2.500
0.6 1.750 3.625
0.7 2.167 6.056
0.8 3.000 13.000
0.9 5.500 50.500

Only at load factors about 0.6 and above does the
length of unsuccessful searches become more than
twice the length of successful searches.

At a load factor of 0.5 you can find if something is in
the table (or not) in less than 3 probes on average: fast
as binary chop on a 8-element table, and the efficiency
of hash addressing depends on the load factor (the
relative sizes of A and L) not on the size of L or A.

18/9/2007 I2A 98 slides 8 16 Richard Bornat
Dept of Computer Science

Worst-case analysis for hash addressing is pretty fierce
mathematics. I shan’t even glance at in this course.

Hash addressing, at low load factors, is O 1() and
binary chop is O Nlg().

So hash addressing can easily be made faster than
binary chop.

The exact analysis supposes that the keys we are searching for
are randomly distributed. In practice there may be regularities
which will increase the size of clusters, and in practice those
clusters can be broken up by ‘re-hashing’ techniques which
replace the sequential search shown above.

18/9/2007 I2A 98 slides 8 17 Richard Bornat
Dept of Computer Science

A nice feature of hash addressing: you can insert new
entries into the table at any time, without disturbing
things that are there already. (But watch that load
factor!) In a binary chop table, you have to move half
– or more – of the entries out of the way.

A not-very-nice feature of hash addressing: deleting
entries is not so easy. You can’t replace an entry with
‘empty’, because that would hide all the entries that
are in its sequential search cluster. You need to be
able to distinguish between ‘full’, ‘empty’ and
‘deleted’.

Weiss has an example implementation (pp 567-
572). You are expected to read and understand it.

18/9/2007 I2A 98 slides 8 18 Richard Bornat
Dept of Computer Science

If you aren’t searching for integers, but (say) for
strings, you may have to use a more interesting hash
function.

making the size of the table a prime number p, treating the
string as a large binary number S, and using S pmod is a
favourite trick of mine. That hash function takes account of all
the bits in S. Weiss talks about this (pp 555-557).

If you find that your keys don’t give a nice spread of indices in
the hash table – and often they don’t – there are fancy ‘re-
hashing’ schemes which minimise the size of clusters. Weiss
describes ‘quadratic rehash’ (pp565).

But just remember that hash addressing is fast, even using the
techniques shown in this lecture, provided only that you are
careful to keep the load factor down.

See Knuth for more than you imagine you might
need to know about hash addressing.

When you do a second or a third-year project,
don’t forget hash addressing!

18/9/2007 I2A 98 slides 8 19 Richard Bornat
Dept of Computer Science

Key points
A hash key is a hash table index, derived from a database key.

The hash table contains all the database keys, used to disambiguate
collisions, plus the corresponding data (or a reference to it).

Load factor is the ratio of hash table size to database size.

Hash addressing always costs a lot in space; if the table size is
proportional to database size we may call it O N().

At load factors (<0.5) hash addressing gives O 1() search time.

The linear rehash mechanism may cause secondary clustering; other
rehash techniques reduce this.

Hash addressing has O N() setup time.

Insertion is difficult to cost, because of the possibility that the table may
have to be resized: normally it’s O 1(), but occasionally it will be
O N(), because a new table must be built.

Deletion costs O 1(), but the deleted entry can’t be reclaimed until the
table is rebuilt.

